Saturday 3 January 2015

What are the effects of carbon on the properties of steel.

In general, an increase in carbon content produces higher ultimate strength and hardness but lowers ductility and toughness of steel alloys. Carbon also increases air-hardening tendencies and weld hardness, especially in the presence of chromium. In low-alloy steel for high-temperature applications, the carbon content is usually restricted to a maximum of about 0.15% in order to assure optimum ductility for welding, expanding, and bending operations. To minimize intergranular corrosion caused by carbide precipitation, the carbon content of austenitic (18-8 type) alloys is limited in commercial specifications to a maximum of 0.08%, or even less, i.e. 0.03% in the extremely low-carbon grades used in certain corrosion-resistant applications.
In plain carbon steels in the normalised condition, the resistance to creep at temperatures below 440°C appears to increase with carbon content up to 0.4% carbon, at higher temperatures there is but little variation of creep properties with carbon content.
An increase in carbon content lessens the thermal and electrical conductivities of steel and increases its hardness on quenching.

No comments:

Post a Comment